Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Circulation ; 149(11): 843-859, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38018467

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Ferroptosis , Humanos , Ratones , Animales , Gangliósido G(M3)/metabolismo , Proteómica , Músculo Liso Vascular/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/metabolismo , Hierro , Miocitos del Músculo Liso/metabolismo , Modelos Animales de Enfermedad
2.
Nat Commun ; 13(1): 1757, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365608

RESUMEN

Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO.


Asunto(s)
Microbioma Gastrointestinal , Aminoácidos Neutros , Animales , Cardiomegalia/metabolismo , Ácidos Grasos/metabolismo , Humanos , Ratones , Estudios Prospectivos , Valeratos
3.
Front Med ; 15(5): 704-717, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33909260

RESUMEN

We conducted a randomized, open-label, parallel-controlled, multicenter trial on the use of Shuanghuanglian (SHL), a traditional Chinese patent medicine, in treating cases of COVID-19. A total of 176 patients received SHL by three doses (56 in low dose, 61 in middle dose, and 59 in high dose) in addition to standard care. The control group was composed of 59 patients who received standard therapy alone. Treatment with SHL was not associated with a difference from standard care in the time to disease recovery. Patients with 14-day SHL treatment had significantly higher rate in negative conversion of SARS-CoV-2 in nucleic acid swab tests than the patients from the control group (93.4% vs. 73.9%, P = 0.006). Analysis of chest computed tomography images showed that treatment with high-dose SHL significantly promoted absorption of inflammatory focus of pneumonia, which was evaluated by density reduction of inflammatory focus from baseline, at day 7 (mean difference (95% CI), -46.39 (-86.83 to -5.94) HU; P = 0.025) and day 14 (mean difference (95% CI), -74.21 (-133.35 to -15.08) HU; P = 0.014). No serious adverse events occurred in the SHL groups. This study illustrated that SHL in combination with standard care was safe and partially effective for the treatment of COVID-19.


Asunto(s)
COVID-19 , Humanos , Medicina Tradicional China , Investigación , SARS-CoV-2 , Resultado del Tratamiento
4.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32737471

RESUMEN

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus , Medicamentos Herbarios Chinos , Flavanonas , Flavonoides , Pandemias , Neumonía Viral , Replicación Viral/efectos de los fármacos , Administración Oral , Animales , Antivirales/química , Antivirales/farmacología , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Pruebas de Enzimas , Flavanonas/química , Flavanonas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Replicación Viral/fisiología
5.
Front Med ; 14(2): 210-214, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32170559

RESUMEN

In December 2019, an outbreak of novel coronavirus (2019-nCoV) occurred in Wuhan, Hubei Province, China. By February 14, 2020, it has led to 66 492 confirmed patients in China and high mortality up to ~2.96% (1123/37 914) in Wuhan. Here we report the first family case of coronavirus disease 2019 (COVID-19) confirmed in Wuhan and treated using the combination of western medicine and Chinese traditional patent medicine Shuanghuanglian oral liquid (SHL). This report describes the identification, diagnosis, clinical course, and management of three cases from a family, suggests the expected therapeutic effects of SHL on COVID-19, and warrants further clinical trials.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Medicina Tradicional China , Neumonía Viral/tratamiento farmacológico , Adulto , COVID-19 , Infecciones por Coronavirus/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/diagnóstico por imagen , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Tratamiento Farmacológico de COVID-19
6.
BMC Cardiovasc Disord ; 20(1): 48, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32013865

RESUMEN

BACKGROUND: Three-dimensional electroanatomic mapping systems have demonstrated a significant reduction in radiation exposure during radiofrequency catheter ablation procedures. We aimed to investigate the safety, feasibility and efficacy of a completely zero-fluoroscopy approach for catheter ablation of supraventricular tachycardia using the Ensite NavX navigation system compared with a conventional fluoroscopy approach. METHODS: A multicenter prospective non-randomized registry study was performed in seven centers from January 2013 to February 2018. Consecutive patients referred for catheter ablation of supraventricular tachycardia were assigned either to a completely zero-fluoroscopic approach (ZF) or conventional fluoroscopy approach (CF) according to the operator's preference. Patients with atrial tachycardia were excluded. RESULTS: Totally, 1020 patients were enrolled in ZF group; 2040 patients ablated by CF approach were selected for controls. There was no significant difference between the zero-fluoroscopy group and conventional fluoroscopy group as to procedure time (60.3 ± 20.3 vs. 59.7 ± 22.6 min, P = 0.90), immediate success rate of procedure (98.8% vs. 99.2%, P = 0.22), arrhythmia recurrence (0.4% vs. 0.5%, P = 0.85), total success rate of procedure (98.4% vs. 98.8%, P = 0.39) or complications (1.1% vs. 1.5%, P = 0.41). Compared with the conventional fluoroscopy approach, the zero-fluoroscopy approach provided similar outcomes without compromising the safety or efficacy of the procedure. CONCLUSION: The completely zero-fluoroscopy approach demonstrated safety and efficacy comparable to a conventional fluoroscopy approach for catheter ablation of supraventricular tachycardia, and mitigated radiation exposure to both patients and operators. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT03042078; first registered February 3, 2017; retrospectively registered.


Asunto(s)
Ablación por Catéter/instrumentación , Técnicas Electrofisiológicas Cardíacas/instrumentación , Exposición a la Radiación/prevención & control , Radiografía Intervencional , Cirugía Asistida por Computador/instrumentación , Taquicardia Supraventricular/cirugía , Potenciales de Acción , Adulto , Ablación por Catéter/efectos adversos , China , Técnicas Electrofisiológicas Cardíacas/efectos adversos , Femenino , Fluoroscopía , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Tempo Operativo , Estudios Prospectivos , Exposición a la Radiación/efectos adversos , Radiografía Intervencional/efectos adversos , Recurrencia , Sistema de Registros , Factores de Riesgo , Cirugía Asistida por Computador/efectos adversos , Taquicardia Supraventricular/diagnóstico por imagen , Taquicardia Supraventricular/fisiopatología , Factores de Tiempo , Resultado del Tratamiento
7.
Asian J Androl ; 19(1): 67-72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27678468

RESUMEN

Our previous studies have demonstrated that erectile function was preserved in aged transgenic rats (TGR) harboring the human tissue kallikrein 1 (hKLK1), while the molecular level of hKLK1 on corporal fibrosis to inhibit age-related erectile dysfunction (ED) is poorly understood. Male wild-type Sprague-Dawley rats (WTR) and TGR harboring the hKLK1 gene were fed to 4- or 18-month-old and divided into three groups: young WTR (yWTR) as the control, aged WTR (aWTR), and aged TGR (aTGR). Erectile function of all rats was assessed by cavernous nerve electrostimulation method. Masson's trichrome staining was used to evaluate corporal fibrosis in the corpus cavernosum. We found that the erectile function of rats in the aWTR group was significantly lower than that of other two groups. Masson's trichrome staining revealed that compared with those of the yWTR and aTGR groups, the ratio of smooth muscle cell (SMC)/collagen (C) was significantly lower in the aWTR group. Immunohistochemistry and Western blotting analysis were performed, and results demonstrated that expression of α-SMA was lower, while expressions of transforming growth factor-ß 1 (TGF-ß1), RhoA, ROCK1, p-MYPT1, p-LIMK2, and p-cofilin were higher in the aWTR group compared with those in other two groups. However, LIMK2 and cofilin expressions did not differ among three groups. Taken together, these results indicated that the RhoA/ROCK1/LIMK/cofilin pathway may be involved in the corporal fibrosis caused by advanced age, and hKLK1 may reduce this corporal fibrosis by inhibiting the activation of this pathway to ameliorate age-related ED.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Envejecimiento/metabolismo , Disfunción Eréctil/metabolismo , Quinasas Lim/metabolismo , Pene/patología , Calicreínas de Tejido/genética , Quinasas Asociadas a rho/metabolismo , Envejecimiento/patología , Animales , Animales Modificados Genéticamente , Western Blotting , Colágeno/metabolismo , Disfunción Eréctil/patología , Fibrosis , Inmunohistoquímica , Masculino , Miocitos del Músculo Liso/patología , Fosfoproteínas , Proteína Fosfatasa 1/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
8.
Neurotoxicology ; 53: 290-300, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26945731

RESUMEN

Although numerous studies have reported the influence of extremely low frequency magnetic field (ELF-MF) exposure on human health, its effects on cognitive deficits in Alzheimer's disease (AD) have remained under debate. Moreover, the influence of ELF-MF on hyperphosphorylated tau, which is one of the most common pathological hallmarks of AD, has not been reported to date. Therefore, transgenic mice (3xTg) were used in the present study. 3xTg mice, which express an APP/PS1 mutation combined with a tau (P301L) mutation and that develop cognitive deficits at 6 months of age, were subjected to ELF-MF (50Hz, 500µT) exposure or sham exposure daily for 3 months. We discovered that ELF-MF exposure ameliorated cognitive deficits and increased synaptic proteins in 3xTg mice. The protective effects of ELF-MF exposure may have also been caused by the inhibition of apoptosis and/or decreased oxidative stress levels that were observed in the hippocampus tissues of treated mice. Furthermore, tau hyperphosphorylation was decreased in vivo because of ELF-MF exposure, and this decrease was induced by the inhibition of GSK3ß and CDK5 activities and activation of PP2Ac. We are the first to report that exposure to ELF-MF can attenuate tau phosphorylation. These findings suggest that ELF-MF exposure could act as a valid therapeutic strategy for ameliorating cognitive deficits and attenuating tau hyperphosphorylation in AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/terapia , Magnetoterapia/métodos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/radioterapia , Precursor de Proteína beta-Amiloide/genética , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Condicionamiento Psicológico/fisiología , Condicionamiento Psicológico/efectos de la radiación , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/efectos de la radiación , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Aprendizaje por Laberinto/fisiología , Aprendizaje por Laberinto/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Fosforilación/efectos de la radiación , Presenilina-1/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas tau/genética
9.
PLoS One ; 9(4): e95841, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24763529

RESUMEN

20-Hydroxyeicosatetraenoic acid (20-HETE) induces endothelial dysfunction and is correlated with diabetes. This study was designed to investigate the effects of 20-HETE on endothelial insulin signaling.Human umbilical vein endothelial cells (HUVECs) or C57BL/6J mice were treated with 20-HETE in the presence or absence of insulin, and p-ERK1/2, p-JNK, IRS-1/PI3K/AKT/eNOS pathway, were examined in endothelial cells and aortas by immunoblotting. eNOS activity and nitric oxide production were measured. 20-HETE increased ERK1/2 phosphorylation and IRS-1 phosphorylation at Ser616; these effects were reversed by ERK1/2 inhibition. We further observed that 20-HETE treatment resulted in impaired insulin-stimulated IRS-1 phosphorylation at Tyr632 and subsequent PI3-kinase/Akt activation. Furthermore, 20-HETE treatment blocked insulin-stimulated phosphorylation of eNOS at the stimulatory Ser1177 site, eNOS activation and NO production; these effects were reversed by inhibiting ERK1/2. Treatment of C57BL/6J mice with 20-HETE resulted in ERK1/2 activation and impaired insulin-dependent activation of the IRS-1/PI3K/Akt/eNOS pathway in the aorta. Our data suggest that the 20-HETE activation of IRS-1 phosphorylation at Ser616 is dependent on ERK1/2 and leads to impaired insulin-stimulated vasodilator effects that are mediated by the IRS-1/PI3K/AKT/eNOS pathway.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/fisiología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Cultivadas , Evaluación Preclínica de Medicamentos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo
10.
Basic Res Cardiol ; 107(6): 306, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23070070

RESUMEN

Receptor for advanced glycation end products (RAGE) is associated with inflammation and the progression of cardiovascular diseases. The current study tested the hypothesis that RAGE is involved in the pathogenesis of aortic valve (AV) calcification. Pioglitazone attenuated AV calcification in experimental hypercholesterolemic rabbits via down-regulation of RAGE. Male New Zealand rabbits weighing 2.5-3.0 kg were randomly divided into three groups: control group, high cholesterol + vitamin D(2) (HC + vitD(2)) group and HC + vitD(2) supplemented with pioglitazone group. Compared with HC + vitD(2) group, pioglitazone significantly inhibited the progression of AV calcification assessed by echocardiography. HC + vitD(2) diet markedly increased RAGE expression, oxidative stress, inflammatory cells infiltration and osteopontin expression. These changes were also significantly attenuated by administration of pioglitazone. Cultured porcine aortic valve interstitial cells (VICs) were used as in vitro model. We found that advanced glycation end products of bovine serum albumin markedly increased the expression of RAGE, induced high levels of production of pro-inflammatory cytokines and promoted osteoblastic differentiation of VICs. However, these effects were found to be remarkably suppressed by siRNA silencing of RAGE and pioglitazone as well. Our data provide evidence that RAGE activation-induced inflammation promotes AV calcification in hypercholesterolemic rabbits, which can be attenuated by pioglitazone treatment. This beneficial effect is associated with remarkable down-regulation of RAGE expression.


Asunto(s)
Estenosis de la Válvula Aórtica/tratamiento farmacológico , Calcinosis/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Receptores Inmunológicos/metabolismo , Tiazolidinedionas/uso terapéutico , Animales , Válvula Aórtica/inmunología , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/inmunología , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/inmunología , Calcinosis/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ecocardiografía , Hipoglucemiantes/farmacología , Inmunohistoquímica , Masculino , Osteoblastos/efectos de los fármacos , PPAR gamma/agonistas , Pioglitazona , Conejos , Receptor para Productos Finales de Glicación Avanzada , Tiazolidinedionas/farmacología
11.
Neurobiol Aging ; 29(11): 1654-65, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17537547

RESUMEN

Hyperhomocysteinemia increases the risk of Alzheimer's disease (AD), but the mechanism is elusive. Here, we found that high plasma homocysteine induced by vena caudalis injection for 2 weeks could induce AD-like tau hyperphosphorylation at multiple sites in rat brain hippocampus. Homocysteine inhibited the activity of protein phosphatase 2A (PP2A) with a simultaneously increased Leu(309)-demethylation and Tyr(307)-phosphorylation of PP2A catalytic subunit (PP2A(C)). PP2A(C) Leu(309)-demethylation was positively correlated with its Tyr(307)-phosphorylation; and the abnormally modified PP2A(C) was incompetent in binding to its regulatory subunit (PP2A(B)). Homocysteine also activated methylesterase which stimulates demethylation of PP2A(C). In hippocampal slices of the homocysteine injected-rats and of the AD patients, the demethylated but not the methylated PP2A(C) was co-localized with the hyperphosphorylated tau. A simultaneous supplement of folate and vitamin B12 restored partially the plasma homocysteine level and thus significantly antagonized the homocysteine-induced tau hyperphosphorylation and as well as PP2A inactivation and the activity-related modifications of PP2A(C). These results suggest that homocysteine may be an upstream effector to induce AD-like tau hyperphosphorylation through inactivating PP2A.


Asunto(s)
Hipocampo/metabolismo , Homocisteína/administración & dosificación , Homocisteína/sangre , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Transducción de Señal/fisiología , Proteínas tau/metabolismo , Animales , Activación Enzimática , Hipocampo/efectos de los fármacos , Inyecciones Intravenosas , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
12.
Cell Res ; 15(9): 717-24, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16212878

RESUMEN

Arachidonic acid cytochrome P-450 (CYP) hydroxylase 4A isoforms, including 4A1, 4A2, 4A3 and 4A8 in the rat kidney, catalyze arachidonic acid to produce 19/20-Hydroxyeicosatetraenoic acids (20-HETE), a biologically active metabolite, which plays an important role in the regulation of blood pressure. However, controversial results have been reported regarding the exact role of 20-HETE on blood pressure. In the present study, we used recombinant adeno-associated viral vector (rAAV) to deliver CYP 4A1 cDNA and antisense 4A1 cDNA into Sprague-Dawley (SD) rats and spontaneously hypertensive rats (SHR), respectively, to investigate the effects of long-term modifications of blood pressure and the potential for gene therapy of hypertension. The mean systolic pressure increased by 14.2+/-2.5 mm Hg in rAAV.4A1-treated SD rats and decreased by 13.7+/-2.2 mm Hg in rAAV.anti4A1-treated SHR rats 5 weeks after the injection compared with controls and these changes in blood pressure were maintained until the experiments ended at 24 weeks. In 4A1 treated animals CYP4A was overexpressed in various tissues, but preferentially in the kidney at both mRNA and protein levels. In anti-4A1-treated SHR, CYP4A mRNA in various tissues was probed, especially in kidneys, but 4A1 protein expression was almost completely inhibited. These results suggest that arachidonic acid CYP hydroxylases contribute not only to the maintenance of normal blood pressure but also to the development of hypertension. rAAV-mediated anti4A administration strategy has the potential to be used as targeted gene therapy in human hypertension by blocking expression of CYP 4A in kidneys.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/fisiología , Dependovirus/genética , Hipertensión/terapia , Animales , Presión Sanguínea , Northern Blotting , Western Blotting , Clonación Molecular , Familia 4 del Citocromo P450 , ADN Complementario/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Isoformas de Proteínas , ARN/química , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley , Sístole , Factores de Tiempo
13.
J Pharmacol Exp Ther ; 314(2): 522-32, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15840765

RESUMEN

Cytochrome P450 arachidonic acid (AA) epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs), dilate arteries via hyperpolarization of smooth muscle cells and also have nonvasodilatory effects within the vasculature. The present study investigated the angiogenic effects of endogenous and exogenous EETs and the relevant signaling mechanisms involved. Bovine aortic endothelial cells (BAECs) were incubated with synthetic EETs or infected with recombinant adeno-associated viruses (rAAVs) containing CYP2C11-NADPH-cytochrome P450 oxidoreductase (CYPOR), CYP2J2, or CYP102 F87V mutant to increase endogenous levels of EETs. The following endpoints were measured: BAEC proliferation, migration, capillary formation, and in vivo angiogenesis. The potential involvement of various signaling pathways was explored using selective inhibitors. The results showed that transfection with either rAAV-CYP2C11-CYPOR, rAAV-CYP2J2, or rAAV-CYP102 F87V, or incubation with EETs promoted BAEC proliferation, increased migration of BAECs as assessed by Transwell analysis and wound healing assays, and enhanced capillary tubule formation as determined by chicken embryo chorioallantoic membrane assays and tube formation tests on matrigel. The effects of EETs on proliferation, migration, and capillary tubule formation were attenuated by inhibitors of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 (PI3)-kinase/Akt pathways and partially attenuated by an endothelial nitric-oxide synthase (eNOS) inhibitor but not by a protein kinase C inhibitor. In a rat ischemic hind limb model, rAAV-mediated AA epoxygenase transfection induced angiogenesis. We conclude that AA epoxygenase metabolites can promote angiogenesis, which may provide protection to ischemic tissues. The results also suggest that the angiogenic effects of EETs involve the MAPK and PI3-kinase/Akt signaling pathways, and to some extent, the eNOS pathway.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Células Endoteliales/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Oxigenasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Adenoviridae/genética , Alantoína/metabolismo , Animales , Western Blotting , Bovinos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Corion/metabolismo , Citocromo P-450 CYP2J2 , ADN Complementario/biosíntesis , ADN Complementario/genética , Citometría de Flujo , Miembro Posterior/irrigación sanguínea , Isquemia/enzimología , Proteínas Proto-Oncogénicas c-akt , Flujo Sanguíneo Regional/fisiología , Estimulación Química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA